该文章提出一种名为DehazeNet的可训练的端到端系统,用于传输值估计。 DehazeNet将模糊图像作为输入,并输出其中间透射图,随后用于通过大气散射模型恢复无雾图像。 DehazeNet采用基于卷积神经网络的深层架构,其层专门设计用于体现图像去雾中已建立的假设/先验。具体而言,Maxout单位的图层用于特征提取,这可以生成几乎所有与雾相关的特征。我们还在DehazeNet中提出了一种新的非线性激活函数,称为双边整流线性单元,它能够提高恢复的无雾图像的质量。我们在提议的DehazeNet的组件与现有方法中使用的组件之间建立连接。基准图像的实验表明,DehazeNet比现有方法具有更高的性能,同时保持高效和易用。

……

阅读全文