1. 线程与进程

1.1 进程与进程

进程: 资源分配的最小单位

  • 进程是线程的容器, 一个进程中包含多个线程, 真正执行任务的是线程

线程: 资源调度的最小单位

进程

  • 程序指令数据组成,但是这些 指令要运行,数据要读写,就必须将指令加载到cpu,数据加载至内存。在指令运行过程中还需要用到磁盘,网络等设备,进程就是用来加载指令,管理内存,管理IO的
  • 当一个指令被运行,从磁盘加载这个程序的代码到内存,这时候就开启了一个进程,进程是系统进行资源分配和调度的基本单位。
  • 进程就可以视为程序的一个实例,大部分程序都可以运行多个实例进程(例如记事本,浏览器等),部分只可以运行一个实例进程(例如360安全卫士)

线程

  • 一个进程之内可以分为多个线程
  • 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行,所以真正占用CPU运行的是线程
  • Java 中,线程作为资源的最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作为线程的容器。

二者对比

  • 进程基本上相互独立的,而线程存在于进程内,是进程的一个子集
  • 进程拥有共享的资源,如内存空间等,供其内部的线程共享; 进程间通信较为复杂 同一台计算机的进程通信称为 IPC(Inter-process communication)
  • 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
  • 线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量
  • 线程更轻量,线程上下文切换成本一般上要比进程上下文切换低

1.2 并行与并发

并发: 在单核CPU下, 一定是并发执行的, 也就是在同一个时间段内一起执行. 实际还是串行执行, CPU的时间片切换非常快, 给人一种同时运行的感觉。

并行: 在多核CPU下, 能真正意义上实现并行执行, 在同一个时刻, 多个线程同时执行; 比如说2核cpu, 同时执行4个线程. 理论上同时可以有2个线程是并行执行的. 此时还是存在并发, 因为2个cpu也会同时切换不同的线程执行任务罢了

并发 (concurrent)

  • 微观串行, 宏观并行
  • 单核 cpu下,线程实际还是串行执行的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于cpu 在线程间(时间片很短)的切换非常快,给人的 感觉是同时运行的 。一般会将这种线程轮流使用 CPU的做法称为并发(concurrent)
  • 线程轮流使用cput称为并发(concurrent) 1583408729416

并行

  • 多核 cpu下,每个核(core) 都可以调度运行线程,这时候线程可以是并行的,不同的线程同时使用不同的cpu在执行。 1583408812725

二者对比

  • 引用 Rob Pike 的一段描述:
    • 并发(concurrent): 是同一时间应对(dealing with)多件事情的能力
    • 并行(parallel): 是同一时间动手做(doing)多件事情的能力

例子

  • 家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发
  • 家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一个人用锅时,另一个人就得等待)
  • 雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是 并行

1.3 应用

应用1:异步调用

同步与异步:以调用方的角度讲

  • 如果需要等待结果返回才能继续运行的话就是同步
  • 如果不需要等待就是异步

设计:

  • 多线程可以让方法执行变为异步的(即不要巴巴干等着)比如说读取磁盘文件时,假设读取操作花费了 5 秒钟,如果没有线程调度机制,这5秒cpu什么都做不了,其它代码都得暂停

结论:

  • 比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换避免阻塞主线程
  • tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程
  • UI 程序中,开线程进行其他操作,避免阻塞 UI 线程

应用2:提高效率

充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。

计算 1 花费 10 ms
计算 2 花费 11 ms
计算 3 花费 9 ms
汇总需要 1 ms
  • 如果是串行执行,那么总共花费的时间是 10 + 11 + 9 + 1 = 31ms
  • 但如果是四核 cpu,各个核心分别使用线程 1 执行计算 1,线程 2 执行计算 2,线程 3 执行计算 3,那么 3 个 线程是并行的,花费时间只取决于最长的那个线程运行的时间,即 11ms 最后加上汇总时间只会花费 12ms

结论:

  • 单核 cpu 下,多线程不能实际提高程序运行效率,只是为了能够在不同的任务之间切换,不同线程轮流使用 cpu ,不至于一个线程总占用 cpu,别的线程没法干活
  • 多核 cpu 可以并行跑多个线程,但能否提高程序运行效率还是要分情况的
    • 有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任 务都能拆分(参考后文的【阿姆达尔定律】)
    • 也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义
  • IO 操作不占用 cpu,只是我们一般拷贝文件使用的是【阻塞 IO】,这时相当于线程虽然不用 cpu,但需要一 直等待 IO 结束,没能充分利用线程。所以才有后面的【非阻塞 IO】和【异步 IO】优化

2. Java线程

2.1 创建和运行线程(重要)

方法一:直接使用Thread

// 构造方法的参数是给线程指定名字,推荐
Thread t1 = new Thread("t1") {//使用匿名内部类
    @Override
    // run 方法内实现了要执行的任务
    public void run() {
        log.debug("hello");
    }
};

//启动线程
t1.start();

方法二:使用Runnable配合Thread (推荐)

把【线程】和【任务】(要执行的代码)分开

  • Thread :代表线程
  • Runnable :可运行的任务(线程要执行的代码)
// 创建任务对象
Runnable task2 = new Runnable() {
    @Override
    public void run() {
        log.debug("hello");
    }
};

// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();
  • 当一个接口带有@FunctionalInterface注解时,表示是一个函数式接口,因此Runable接口是可以使用lambda来简化操作的
  • 所以方法二中的代码可以被简化为
// 创建任务对象
Runnable task2 = () -> log.debug("hello");

// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();
* 原理之 Thread 与 Runnable 的关系
  • 分析 Thread 的源码,理清它与 Runnable 的关系

小结

  • 方法1 是把线程和任务合并在了一起,方法2 是把线程和任务分开了
  • **用 Runnable 更容易与线程池等高级 API 配合 **
  • 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活

方法三:使用FutureTask与Thread结合

使用FutureTask可以接收 Callable 类型的参数,用来处理有返回结果的情况(Runnable的run方法没有返回值)

// 创建任务对象
FutureTask<Integer> task3 = new FutureTask<>(() -> {
    log.debug("hello");
    return 100;
});

// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t3 = new Thread(task3, "t3");
t3.start();

// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);

方法四:使用线程池来创建线程

/**
 * 创建线程的方式四:使用线程池
 *
 * 好处:
 * 1.提高响应速度(减少了创建新线程的时间)
 * 2.降低资源消耗(重复利用线程池中线程,不需要每次都创建)
 * 3.便于线程管理
 *      corePoolSize:核心池的大小
 *      maximumPoolSize:最大线程数
 *      keepAliveTime:线程没有任务时最多保持多长时间后会终止
 *
 *
 * 面试题:创建多线程有几种方式?四种!
 */

class NumberThread implements Runnable{

    @Override
    public void run() {
        for(int i = 0;i <= 100;i++){
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

class NumberThread1 implements Runnable{

    @Override
    public void run() {
        for(int i = 0;i <= 100;i++){
            if(i % 2 != 0){
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

public class ThreadPool {

    public static void main(String[] args) {
        //1. 提供指定线程数量的线程池
        ExecutorService service = Executors.newFixedThreadPool(10);
        ThreadPoolExecutor service1 = (ThreadPoolExecutor) service;
        //设置线程池的属性
//        System.out.println(service.getClass());
//        service1.setCorePoolSize(15);
//        service1.setKeepAliveTime();


        //2.执行指定的线程的操作。需要提供实现Runnable接口或Callable接口实现类的对象
        service.execute(new NumberThread());//适合使用于Runnable
        service.execute(new NumberThread1());//适合使用于Runnable

//        service.submit(Callable callable);//适合使用于Callable
        //3.关闭连接池
        service.shutdown();
    }
}

总结

  • 使用 继承方式的好处是方便传参,你可以在子类里面添加成员变量,通过set方法设置参数或者通过构造函数进行传递,而如果使用Runnable方式,则只能使用主线程里面被声明为final的变量。不好的地方是Java不支持多继承,如果继承了Thread类,那么子类不能再继承其他类,而Runable则没有这个限制。前两种方式都没办法拿到任务的返回结果,但是Futuretask方式可以
  • 开发中一般使用线程池的方式

2.2 查看进程线程的方法

在这里插入图片描述

2.3 线程运行原理 (重点)

虚拟机栈与栈帧

  • 虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(stack frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息,是属于线程私有的。当Java中使用多线程时,每个线程都会维护它自己的栈帧!每个线程只能有一个活动栈帧(在栈顶),对应着当前正在执行的那个方法

例子:

public class TestFrames {
    public static void main(String[] args) {
        method1(10);
    }
    public static void method1(int x) {
        int y = x + 1;
        Object m = method2();
        System.out.println(m);
    }
    public static void method2() {
		Object n = new Object();
        return n;
    }
}

image-20210301110521333

该图展示的是单个线程的运行时数据区的状态,当有多线程时,由于虚拟机栈是线程私有的,因此每个线程都会维护自己的虚拟机栈,每个线程调用一个方法时,就会创建一个对应于该方法的栈帧。

线程上下文切换(Thread Context Switch)

因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程

  • 线程的 cpu 时间片用完(每个线程轮流执行,看前面并行的概念)
  • 垃圾回收
  • 有更高优先级的线程需要运行
  • 线程自己调用了 sleepyieldwaitjoinparksynchronizedlock 等方法

Thread Context Switch发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的

  • 线程的状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
  • Context Switch 频繁发生会影响性能

2.4 Thread的常见方法

7f246.png) 在这里插入图片描述

image-20210301100805722

2.5 调用start 与 run方法的区别

调用start()方法

public static void main(String[] args) {
    Thread thread = new Thread(){
      @Override
      public void run(){
          log.debug("我是一个新建的线程正在运行中");
          FileReader.read(fileName);
      }
    };
    thread.setName("新建线程");
    thread.start();
    log.debug("主线程");
}
  • 输出:程序在t1 线程运行run()方法里面内容的调用是异步的代码
11:59:40.711 [main] DEBUG com.concurrent.test.Test4 - 主线程
11:59:40.711 [新建线程] DEBUG com.concurrent.test.Test4 - 我是一个新建的线程正在运行中
11:59:40.732 [新建线程] DEBUG com.concurrent.test.FileReader - read [test] start ...
11:59:40.735 [新建线程] DEBUG com.concurrent.test.FileReader - read [test] end ... cost: 3 ms

调用run()方法

  • 将上面代码的thread.start();改为 thread.run();输出结果如下:程序仍在 main 线程运行, run()方法里面内容的调用还是同步的
12:03:46.711 [main] DEBUG com.concurrent.test.Test4 - 我是一个新建的线程正在运行中
12:03:46.727 [main] DEBUG com.concurrent.test.FileReader - read [test] start ...
12:03:46.729 [main] DEBUG com.concurrent.test.FileReader - read [test] end ... cost: 2 ms
12:03:46.730 [main] DEBUG com.concurrent.test.Test4 - 主线程

小结

  • 直接调用 run() 是在主线程中执行了 run()没有启动新的线程
  • 使用 start()启动新的线程,通过新的线程间接执行 run()方法中的代码

2.6 sleep 与 yield

sleep方法

  1. 调用 sleep() 会让当前线程从 Running(运行状态) 进入 Timed Waiting 状态(阻塞)

  2. 其它线程可以使用interrupt 方法打断正在睡眠的线程,那么被打断的线程这时就会抛出 InterruptedException异常【注意:这里打断的是正在休眠的线程,而不是其它状态的线程】

  3. 睡眠结束后的线程未必会立刻得到执行 (需要分配到cpu时间片)

  4. 建议用 TimeUnitsleep() 代替 Thread 的 sleep()来获得更好的可读性

    //可以控制睡眠时间单位,可读性更好
    TimeUnit.SECONDS.sleep(1)
    //sleep的时间单位默认为毫秒ms
    Thread.sleep(1000)
    

yield方法

  1. 调用 yield 会让当前线程从Running 进入 Runnable 就绪状态,然后调度执行其它线程
  2. 具体的实现依赖于操作系统的任务调度器(就是可能没有其它的线程正在执行,虽然调用了yield方法,但是也没有用)

两者对比

  • yield使cpu调用其它线程,但是cpu可能会再分配时间片给该线程而sleep需要等过了休眠时间之后才有可能被分配cpu时间片

线程优先级

  • 线程优先级提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它, 如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用
thread1.setPriority(Thread.MAX_PRIORITY); //设置为优先级最高。最大为10,最小为1,默认为5

2.7 join方法详解

为什么要使用join

  • 主线程中调用t1.join,则主线程等待t1线程执行完之后继续执行
private static void test1() throws InterruptedException {
    log.debug("开始");
    Thread t1 = new Thread(() -> {
        log.debug("开始");
        sleep(1);
        log.debug("结束");
        r = 10;
    },"t1");
    t1.start();
    // t1.join(); 
    // 这里如果不加t1.join(), 此时主线程不会等待t1线程给r赋值, 主线程直接就输出r=0结束了
    // 如果加上t1.join(), 此时主线程会等待到t1线程执行完才会继续执行.(同步), 此时r=10;
    log.debug("结果为:{}", r);
    log.debug("结束");
}

应用之同步

以调用方角度来讲,如果:

  • 需要等待结果返回,才能继续运行就是同步
  • 不需要等待结果返回,就能继续运行就是异步

下图, 因为开辟了t1线程. 此时程序中有两个线程; main线程和t1线程; 此时在main线程中调用t1.join, 所以main线程只能阻塞等待t1线程执行完. t1线程在1s后将r=10, t1线程执行完, 此时main线程才会接着执行 1583483843354

问,下面代码 cost 大约多少秒?

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
    test2();
}
private static void test2() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        sleep(1);
        r1 = 10;
    });
    Thread t2 = new Thread(() -> {
        sleep(2);
        r2 = 20;
    });
    long start = System.currentTimeMillis();
    t1.start();
    t2.start();
    
    t1.join();
    t2.join();
    long end = System.currentTimeMillis();
    log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

分析如下

  • 第一个 join:等待 t1 时,主线程停止但是 t2 并没有停止,而在运行,因此 t2 sleep了1秒
  • 第二个 join:1s 后,执行到此,t2 也已经运行了 1s,因此也只需再等待 1s

如果颠倒两个 join 呢?最终也是只进行了2s。输出:

20:45:43.239 [main] c.TestJoin - r1: 10 r2: 20 cost: 2005

image-20210301134858181

有时效的 join

等够时间

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
    test3();
}
public static void test3() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        sleep(1);
        r1 = 10;
    });
    long start = System.currentTimeMillis();
    t1.start();
    // 线程执行结束会导致 join 结束
    t1.join(1500);
    long end = System.currentTimeMillis();
    log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

输出:

20:48:01.320 [main] c.TestJoin - r1: 10 r2: 0 cost: 1010

没等够时间:

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
    test3();
}
public static void test3() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        sleep(2);
        r1 = 10;
    });
    long start = System.currentTimeMillis();
    t1.start();
    // 超过时间之后会导致 join 结束,此时线程还处于 sleep 状态
    t1.join(1500);
    long end = System.currentTimeMillis();
    log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

输出:

20:52:15.623 [main] c.TestJoin - r1: 0 r2: 0 cost: 1502

2.8 interrupt 方法详解

打断 sleep,wait,join

该方法用于打断 sleep,wait,join的线程, 在阻塞期间cpu不会分配给时间片

  • 先了解一些interrupt()方法的相关知识:博客地址
  • 如果一个线程在在运行中被打断打断标记会被置为true
  • 如果是打断因sleep wait join方法而被阻塞的线程,会将打断标记置为false

sleep,wait,join的线程,这几个方法都会让线程进入阻塞状态,以 sleep 为例

public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(() -> {
            System.out.println("sleep...");
            try {
                Thread.sleep(5000); // wait, join
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        t1.start();
        Thread.sleep(1000);
        System.out.println("iterrupt..");
        t1.interrupt();
        System.out.println(t1.isInterrupted()); // 如果是打断sleep,wait,join的线程, 即使打断了, 标记也为false
    }
}

输出:

sleep...
iterrupt..
打断标记为:false
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at com.guizy.ThreadPrintDemo.lambda$main$0(ThreadPrintDemo.java:14)
at java.lang.Thread.run(Thread.java:748)

Process finished with exit code 0

打断正常运行的线程

  • 打断正常运行的线程, 线程并不会暂停,只是调用方法Thread.currentThread().isInterrupted();的返回值为true,可以判断Thread.currentThread().isInterrupted();的值来手动停止线程
public static void main(String[] args) throws InterruptedException {
    Thread t1 = new Thread(() -> {
        while(true) {
            boolean interrupted = Thread.currentThread().isInterrupted();
            if(interrupted) {
                System.out.println("被打断了, 退出循环");
                break;
            }
        }
    }, "t1");
    t1.start();
    Thread.sleep(1000);
    System.out.println("interrupt");
    t1.interrupt();
    System.out.println("打断标记为: "+t1.isInterrupted());
}
interrupt
被打断了, 退出循环
打断标记为: true

Process finished with exit code 0

终止模式之两阶段终止模式

当我们在执行线程一时,想要终止线程二,这是就需要使用interrupt方法来优雅的停止线程二。

  • Two Phase Termination,就是考虑在一个线程T1中如何优雅地终止另一个线程T2?这里的优雅指的是给T2线程一个处理其他事情的机会(如释放锁)。

错误思路:

  • 使用线程对象的 stop() 方法停止线程

    • stop 方法会真正杀死线程,如果这时线程锁住了共享资源,那么当它被杀死后就再也没有机会释放锁,其他线程将永远无法获取锁
  • 使用 System.exit(int) 方法停止线程

    • 目的仅是停止一个线程,但是这种做法会让整个程序都停止
  • 如下所示:那么线程的isInterrupted()方法可以取得线程的打断标记

    • 如果线程在睡眠sleep期间被打断,打断标记是不会变的,为false,但是sleep期间被打断会抛出异常,我们据此手动设置打断标记为true
    • 如果是在程序正常运行期间被打断的,那么打断标记就被自动设置为true。处理好这两种情况那我们就可以放心地来料理后事啦!

下图①就是正常运行打断, ②是在睡眠中被打断 1583496991915

代码实现如下:

public class Test7 {
	public static void main(String[] args) throws InterruptedException {
		Monitor monitor = new Monitor();
		monitor.start();
		Thread.sleep(3500);
		monitor.stop();
	}
}

class Monitor {

	Thread monitor;

	/**
	 * 启动监控器线程
	 */
	public void start() {
		//设置监控器线程,用于监控线程状态
		monitor = new Thread() {
			@Override
			public void run() {
				//开始不停的监控
				while (true) {
                    //判断当前线程是否被打断了
					if(Thread.currentThread().isInterrupted()) {
						System.out.println("处理后续任务");
                        //终止线程执行
						break;
					}
					System.out.println("监控器运行中...");
					try {
						//线程休眠
						Thread.sleep(1000);
                        log.debug("执行监控记录");
					} catch (InterruptedException e) {
						e.printStackTrace();
						//如果是在休眠的时候被打断,不会将打断标记设置为true,这时要重新设置打断标记
						Thread.currentThread().interrupt();
					}
				}
			}
		};
		monitor.start();
	}

	/**
	 * 	用于停止监控器线程
	 */
	public void stop() {
		//打断线程
		monitor.interrupt();
	}
}

打断 park 线程

打断 park 线程, 不会清空打断状态

private static void test3() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        log.debug("park...");
        LockSupport.park();//让当前线程停下来
        log.debug("unpark...");
        log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
    }, "t1");
    t1.start();
    sleep(0.5);
    t1.interrupt();
}

输出:

21:11:52.795 [t1] c.TestInterrupt - park...
21:11:53.295 [t1] c.TestInterrupt - unpark...
21:11:53.295 [t1] c.TestInterrupt - 打断状态:true

如果打断标记已经是 true, 则 park 会失效

private static void test4() {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 5; i++) {
            log.debug("park...");
            LockSupport.park();
            log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
        }
    });
    t1.start();
    sleep(1);
    t1.interrupt();
}

输出

21:13:48.783 [Thread-0] c.TestInterrupt - park...
21:13:49.809 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.812 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true

提示 可以使用 Thread.interrupted() 清除打断状态

2.9 sleep,yiled,wait,join 对比及其他不推荐方法

补充:

  • sleep,join,yield,interrupted是Thread类中的方法
  • wait/notify是object中的方法
  • sleep 不释放锁、释放cpu
  • join 释放锁、抢占cpu
  • yiled 不释放锁、释放cpu
  • wait 释放锁、释放cpu

在这里插入图片描述

2.10 守护线程

  • 默认情况下,当Java进程中有多个线程在执行时,只有当所有线程都执行完毕后,Java进程才会结束。有一种特殊的线程叫做守护线程只要其他非守护线程结束了,即使守护线程没有执行完毕,也会强制结束

例:

log.debug("开始运行...");
Thread t1 = new Thread(() -> {
    log.debug("开始运行...");
    sleep(2);
    log.debug("运行结束...");
}, "daemon");

// 设置该线程为守护线程
t1.setDaemon(true);
t1.start();
sleep(1);
log.debug("运行结束...");

输出

08:26:38.123 [main] c.TestDaemon - 开始运行...
08:26:38.213 [daemon] c.TestDaemon - 开始运行...
08:26:39.215 [main] c.TestDaemon - 运行结束...

注意:

  • 垃圾回收器线程就是一种守护线程
  • Tomcat 中的 Acceptor 和 Poller 线程都是守护线程,所以 Tomcat 接收到 shutdown 命令后,不会等待它们处理完当前请求

2.11 五种状态

  • 操作系统的层面上 1583507073055
  1. 初始状态,仅仅是在语言层面上创建了线程对象,即Thead thread = new Thead();,还未与操作系统线程关联

  2. 可运行状态,也称就绪状态,指该线程已经被创建,与操作系统相关联,等待cpu给它分配时间片就可运行

  3. 运行状态,指线程获取了CPU时间片,正在运行

    1. 当CPU时间片用完,线程会转换至【可运行状态】,等待 CPU再次分配时间片,会导致我们前面讲到的上下文切换
  4. 阻塞状态

    1. 如果调用了阻塞API,如BIO读写文件,那么线程实际上不会用到CPU,不会分配CPU时间片,会导致上下文切换,进入【阻塞状态】
    2. 等待BIO操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
    3. 与【可运行状态】的区别是,只要操作系统一直不唤醒线程,调度器就一直不会考虑调度它们,CPU就一直不会分配时间片
  5. 终止状态表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态

2.12 六种状态

  • 这是从 Java API 层面来描述的
  • 根据Thread.State 枚举,分为六种状态

在这里插入图片描述

新建状态运行状态(就绪状态, 运行中状态)、阻塞状态等待状态定时等待状态终止状态

  • NEW (新建状态) 线程刚被创建,但是还没有调用 start() 方法
  • RUNNABLE (运行状态) 当调用了 start() 方法之后,注意,Java API 层面的RUNNABLE 状态涵盖了操作系统层面的 【就绪状态】、【运行中状态】和【阻塞状态】(由于 BIO 导致的线程阻塞,在 Java 里无法区分,仍然认为 是可运行)
  • BLOCKED (阻塞状态)WAITING (等待状态)TIMED_WAITING(定时等待状态) 都是 Java API 层面对【阻塞状态】的细分,如 sleep 就为 TIMED_WAITING, **join **为 **WAITING **状态。后面会在状态转换一节详述。
  • TERMINATED (结束状态) 当线程代码运行结束
@Slf4j(topic = "c.TestState")
public class TestState {
    public static void main(String[] args) throws IOException {
        Thread t1 = new Thread("t1") {	// new 状态
            @Override
            public void run() {
                log.debug("running...");
            }
        };

        Thread t2 = new Thread("t2") {
            @Override
            public void run() {
                while(true) { // runnable 状态

                }
            }
        };
        t2.start();

        Thread t3 = new Thread("t3") {
            @Override
            public void run() {
                log.debug("running...");
            }
        };
        t3.start();

        Thread t4 = new Thread("t4") {
            @Override
            public void run() {
                synchronized (TestState.class) {
                    try {
                        Thread.sleep(1000000); // timed_waiting 显示阻塞状态
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        t4.start();

        Thread t5 = new Thread("t5") {
            @Override
            public void run() {
                try {
                    t2.join(); // waiting 状态
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }  
            }
        };
        t5.start();

        Thread t6 = new Thread("t6") {
            @Override
            public void run() {
                synchronized (TestState.class) { // blocked 状态
                    try {
                        Thread.sleep(1000000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        t6.start();

        try {
            Thread.sleep(500);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        log.debug("t1 state {}", t1.getState());
        log.debug("t2 state {}", t2.getState());
        log.debug("t3 state {}", t3.getState());
        log.debug("t4 state {}", t4.getState());
        log.debug("t5 state {}", t5.getState());
        log.debug("t6 state {}", t6.getState());
    }
}

2.13 本章小结

本章的重点在于掌握

  • 线程创建
  • 线程重要 api,如 start,run,sleep,join,interrupt 等
  • 线程状态

应用方面

  • 异步调用:主线程执行期间,其它线程异步执行耗时操作
  • 提高效率:并行计算,缩短运算时间
  • 同步等待:join
  • 统筹规划:合理使用线程,得到最优效果

原理方面

  • 线程运行流程:栈、栈帧、上下文切换、程序计数器
  • Thread 两种创建方式的源码
  • 模式方面
  • 终止模式之两阶段终止